446663

AUAIJEN

110000599790

RECEIVE

Ticona_{20 2012}

July 16, 2012 EIJ-058-12 TPI Project – 07082011-MISC

Air/Toxics & Inspection
Bishop Facility
Highway 77 South
P.O. Box 428

Air/Toxics & Inspection
Coordination Branch

Bishop, TX 78343

Certified Mail 7010 0780 0000 1768 3086

Mr. David Eppler Air Toxics and Inspection Coordination Branch U.S.EPA Region 6 1445 Ross Avenue Dallas, TX 75202-2733

Subject:

Clean Air Act ("CAA") Section 114 Information Request – Supplemental Monthly Response

Dear Mr. Eppler,

As agreed to during our meeting on December 20, 2011, Ticona Polymers, Inc. (TPI) is submitting the following update relating to the EPA's Section 114 Information Request. Per our email correspondence of July 3, 2012, this report is being submitted one week from the original due date of July 9, 2012. The team continues to work diligently on this project and will provide the next update by August 6, 2012.

The MO-4 and MO-3 flares were initially classified and designed to operate as non-assisted flares with center steam addition to prevent flash back. The status of both flares has changed to steam assisted due to the addition of center steam. According to 40 CFR Part 60 (Codes of Federal Regulation), flares shall be used only with the net heating value of the gas being combusted at 300 BTU/SCF or greater if the flare is steam-assisted. The BTU value of both flares was calculated using the Lower Heat Value (LHV) of each component in the vent gas stream. The analysis of current NHV of both flares (using 272 BTU/SCF as hydrogen's LHV) suggests that both unit flares will require modification. However, the adjusted LHV value of hydrogen (1212 BTU/SCF) was implemented based on guidance from the EPA. The adjusted LHV value of hydrogen was used to calculate the limit for the net heating value of the gases in the combustion zone (NHV_{cz-limit}), which is the new recommended NHV limit instead of the NHV value of 300 BTU/SCF. See Appendix A.

This calculated limit based on the adjusted hydrogen LHV must exceed the NHV_{cz} of the flare ($NHV_{cz} \ge NHV_{cz-limit}$). The calculations indicated that MO-3 $NHV_{cz-limit}$ is 336.7 BTU/SCF and the current NHV_{cz} is approximately 361.5 BTU/SCF. Therefore, the MO-3 flare already satisfies the regulatory requirement and does not need any modification.

The combustion zone limit calculations for the MO-4 flare suggest that the unit requires more natural gas to meet the regulatory requirement. For the MO-4 flare the NHV $_{\rm cz-limit}$ is calculated to be 343 BTU/SCF and the current NHV $_{\rm cz}$, at high rates, is approximately 312.8 BTU/SCF. A project is being implemented to eliminate this deficiency and successfully meet the natural gas capacity to the MO-4 flare. Conversation with

Ticona A business of Celanese

Celanese

personnel from the manufacturer of the current MO-4 and MO-3 flares, Calladius Technology, confirmed that the flares have the capacity to operate at higher natural gas rates.

Additionally, MO-4 does not require 550M SCFH of natural gas when it is not flaring at high rates. Our future goal is to optimize this system by implementing ratio control. Ratio control will reduce the unnecessary use of natural gas during lower rates and/or start-ups.

Flare Design Requirement and Results

In increasing the natural gas flow to the flare, the following parameters were considered: the tip velocity, NHV of the vent gas, stack height, back pressure and radiation on the ground level. These calculations can be found in Appendix A.

The required net heating value is 300 BTU/SCF for steam-assisted flares and 200 BTU/SCF for non-steam assisted flares. These limits differ when the adjusted net heating value of hydrogen is utilized. The new combustion zone-limit is calculated using the following mathematical equations.

Lower Flammability Limit (LFL) of the vent gas mixture

$$LFL_{vg} = \frac{1}{\sum_{i=1}^{n} (\frac{X_i}{EFL_i})}$$
 Eq. 1.1

This calculation uses the weighted average of the LFLs of the individual compounds weighted by their volume fraction of the vent gas. The lower LFLvg for MO-3 is 16% (vol%) and LFLvg for MO-4 is 20% (vol%).

Net Heating Value (NHV) of the vent gas

$$NHV_{ve} = \sum_{i=1}^{n} (x_i * NHV_i)$$
 Eq. 1.2

The adjusted net heating value for hydrogen, 1212 BTU/SCF, was implemented in the vent gas NHV calculation.

NHV of the vent gas at its LFL (NHVvg-LFL)

$$NHV_{vg-LFL} = NHV_{vg} * LFL_{vg}$$
 Eq. 1.3

This value is used to calculate the new combustion zone limit based on the adjusted hydrogen LHV.

Combustion efficiency Multipliers to calculate the Net Heating Value Combustion Zone-Limit (NHV_{cz-limit})

$$NHV_{cz-limit} = (A + B * x_{propylene}) * NHV_{vg-LFL}$$
 Eq. 1.4

Eq. 1.4 is a standard equation used in combustion zone limit calculations. However, the MO-4 and MO-3 process vent does not consist of any propylene; therefore, the following simplified equation is used.

$$NHV_{cz-limit} = (A) * NHV_{ve-LFL}$$
Eq. 1.5

Variable A is based on Table 1.

Minimum	VOC Vent Gas	A Multiplier	B Mul	tiplier*
Steam	Concentration	-	Condition A	Condition B
≤1000 lb/hr	≤20.0%	6.45	4.0	0.0
≤1000 lb/hr	>20.0%	6.85	4.0	0.0
>1000 lb/hr	≤20.0%	7.1	4.0	0.0
>1000 lb/hr	>20.0%	7.4	4.0	0.0

^{*}The B Multiplier used depends on the relationship of hydrogen and propylene in the vent gas as follows: Condition A: 3≤H₂≤8 and Propylene% ≥H₂% (all percentages are volume or mole percentages) Condition B: Any condition not meeting the requirements for Condition A.

The Net Heating Value of the gases in the Combustion Zone of a flare is required to ensure acceptable combustion efficiency. Because the adjusted hydrogen LHV is considered in the NHV calculation, the NHV_{cz-limit} is an adjusted limit which is required to be satisfied in order to comply with this EPA regulation. The NHV_{cz-limit} for MO-3 is calculated to 337 BTU/SCF and for MO-4 is 343 BTU/SCF.

NHV of the Combustion Zone Gas (NHVcz)

$$NHV_{cz} = \frac{(Q_{vg}*NHV_{vg}) + (Q_{ng}*NHV_{ng})}{Q_{vg}*Q_{ng} + Q_{steam}}$$
Eq. 1.6

The net heating value (NHV) calculation in the combustion zone combines the NHVs of the natural gas (fuel gas), vent gas, and steam. The NHV of steam is considered to be zero; therefore, it has no combustion contribution. The volumetric flow of the natural gas, vent gas and steam are measured by on-line flow meters. Equation 1.5 utilizes volumetric flow rate and net heating values for each stream to calculate the NHV_{cz}. The calculated NHV_{cz} for MO-3 is 341.94 BTU/SCF and MO-4 is 312.79 BTU/SCF. The NHV_{cz} for MO-3 is already above the calculated combustion zone limit (NHV_{cz} \geq NHV_{cz-limit}), so does not need any modification. The NHV_{cz} value and NHV_{cz-limit} value for MO-4 differ by approximately 30 BTU/SCF. The MO-4 flare will require modifications in order to satisfy EPA regulations.

Hydraulic calculations show that the current natural gas system serving the flare does not have the capability of flowing 550M SCFH. To increase the available pressure drop across the flow control valve, the current natural gas pipeline must be modified. By enlarging a section of 6" pipe to 8" pipe will provide sufficient available pressure drop across the flow control valve to exceed the volumetric flow of 550M SCFH. See Appendix B for hydraulic calculations.

The Code of Federal Regulation part 60¹ also states that steam-assisted and non-steam assisted flares shall be designed and operated with an exit velocity less than 60 ft/s.

The calculated exit velocity (with steam) for MO-3 is 46.9 ft/sec and MO-4 is 51.6 ft/sec. See Appendix A for calculations and Appendix C for references.

By implementing Celanese standard practice, the height of the current flare was analyzed utilizing 500 BTU/SCF as the permissible design level (K). The MO-4 and MO-3 flares are in locations where there is constant traffic present. This K value provides calculations resembling accepted radiation at any location where personnel with appropriate clothing are present continuously. Therefore, utilizing this radiation limit in the analysis provides safe radiation at ground level.⁴

$$D = \sqrt{\frac{\tau FQ}{4\pi K}}$$
 Eq. 1.7

Equation 1.7 was used to determine the minimum distance from a flare to an object/person (ground level). Based on API 521, τ , the fraction of heat intensity transmitted, was considered to be 1. The Gas Processors Suppliers Association² and Callidus Technologies suggested a value of 0.12 for F³, fraction of heat radiated, which is based on the emissivity values for flared gases. The Q value, heat release in BTU/SCF, used in this calculation simulates a worst case scenario for today's operations. Based on this equation, the required height of the flare is concluded to be 139.9ft for safe exposure to radiation at any location where personnel with appropriate clothing may be continuously exposed. The height of the MO-4 flare stack today is 140ft, which satisfies the required flare height for safe radiation at ground level according to Celanese's process safety standards. See Appendix C for API 521 references.

Back pressure caused by higher natural gas rates was also analyzed. The MO-4 unit can potentially trip on high AMR because of high back pressure, which potentially could result from additional natural gas in the seal pot. The back pressure analysis (hydraulic calculations), using PIC 631 and PIC 647, as illustrated in Figure 1, suggested that the increase in back pressure is approximately 1"wc (water column), which does not affect the unit during normal operation.

Figure 1

The material of construction or the integrity of the flare at higher natural gas rates was also a concern. The manufacturer of the MO-4 flare was contacted, Callidus

Technologies, and assured that the MO-4 flare has the capacity to operate at higher natural gas rates.

Conclusion

Calculations for MO-4 BTU value illustrated a deficiency of approximately 30 BTU/SCF. which can be met by increasing the natural gas rates to the flare by approximately 166M SCFH. This project will replace nearly 300ft of 6" pipe with 8" pipe and install a 6" control valve in place of a 4" control valve at a cost of \$250M +/- 50%.

Appendix A

Calculations: BTU, Tip velocity, Flare height, Radiation

Appendix A BTU Appendix A MO-4 NG CV.xls

Appendix B

Hydraulic calculations

Appendix C References

GUR flare -TPI has been in contact with Allen Brookey and Jim Franklin of John Zink Co., to determine the appropriate steam to vent gas ratio for that flare. After providing the flare information that was requested, Mr. Brookey replied "this

information is a bit of a "holy grail" in terms of flare engineering. For turn down cases such as these, we cannot yet accurately predict what the destruction efficiency is." TPI has determined that all center steam to the flare will be eliminated in order to prevent the vent to gas ratio exceeding 2 as was established in our December 20, 2011 meeting.

Should you have any questions or need additional information, please contact me at (361) 584-6104.

Sincerely,

Buddy Joyner

Sr. Environmental Specialist II

Appendix A

Calculations: BTU, Tip velocity, Flare height, Radiation

MO4 vent sample	data taken	on 05/18/2012	(High hydr	ogen BTU	value)								
	Mole%	Lower Heating Value	Vent Gas I	Vent Gas	ELFL (% Vo	Vent Gas I	Natural Ga	Steam Flo	Steam Flo	Natural Ga	Natural Ga	Net Flare	RTU Value
Hydrogen	19			408.5941	0.04	236.9247	937	12		384,15		312.7855	
Argon-O2	0.697	0			Not flamma			······································	200.000.		000.0022	012.,000	
Nitrogen	71.637	0	1517.2				t · · · · · · · · · · · · · · · · · · ·		1				
Carbon Monoxide	0.973	320.9	20.60717										
Carbon Dioxide	7.334	0	155,3268		Not flamma	able			1			···· ·-· ·	
Methane	0.001	907.74		0.021505		1010							
Methyl Formate	0.3	1023,29	6.3537										
Methylal	0.0	2041,45	0.000,	0.10.100			t				•		
Methanol	0.058	764.45			0.06		ŀ				1		
Benzene	0,000		0				1						
Methoxymethylal	0	2669.58	0				t				f· ·		<u> </u>
wiensoxymensysas		Total Veng Gas Rate		2150,495			†				1		
	100	Total very das Nate		2100,400	 		·		1				
Vent Gas BTU Valu	BTH/for	MBTU/hr					·				· ·		
Hydrogen	4.95E+08			<u> </u>	<u> </u>		ļ · · ·					-	· · · · · · · · · ·
Argon-O2	4,935,700			l	 		ł				 	100	
Nitrogen	0	0		 	<u> </u>		 			 			ļ
Carbon Monoxide	6714613	6714.613424		<u> </u>	 								
Carbon Dioxide	07 14013	0114.013424		.									
Melhane	19520.9	19.52090421											
Methyl Formate	6601740												1.
	0001740	0001.740307											
Methylal	1	050 4000070					 		 				+
Methanol	953488.7	953.4886672			ļ				 			L	
Benzene	0	0											
Methoxymethylal	0	U											
	-	roorer eras							ļ				
DTILLOOF	į.	509505.3746							ļ				
BTU/SCF		236.9246854							ļ				
					1		ļ		ļ		ļ		
	<u>[</u>						l				ļ		
Using Celanese NO	3 LHV												
							l						
LFLVG	0.203899	vol %		1							i		
				ļ	ļ								
NHVVG	236,9247	BTU/SCF											
					<u> </u>		i				<u> </u>		
NHVVG-LFL	48.30859	BTU/SCF											
							l		l				
NHVCZ-limit	342.991	BTU/SCF							<u> </u>	l			
NHVCZ	312.7855	BTU/SCF											
		difference in CZ-limit			30,2055		i						
Adjusted NHVCZ	346.5438	BTU/SCF [w/ 550000	SCFH of n	atural gas								
	1]]					T				
Tip velocity	51.65199	ft/sec					1						1
									1				T
Flare height	139.9046	14	ALEGO DEL	J/ft^2 perm	ionibla dania		1	1	1	1	1	t	1

Chen	icial E	ngineering A	rticle Ju	me 28, 197	1, Figure 7	for '	1.4 SG	Solids						
				0.5										
		Fr No		0.5	10				 					Ţ
		Cv		B= '	A =				+					
				0.30103	-0.69315				+					
				0.30103	2		3		+					T
					Sch 10S	Sch -			†					
NI a mair				Pipe ID	2.157			inches	t			-		
Nomi Sch	naı			1 IDC 112										
					<u></u>									
Nomi	nal D	STD XS		XXS	Sch 20	Sch	40	Sch 80	S	ch 160	Sch 5S	Sch 10S	Sch 40S	Sch 80S
140::::	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	3	4	5		6	7		8	9			
	0.5	0.622	0.546	0.252		-	0.622	0.546	i	0.466	0.71	0.674		
	0.75	0.824	0.742	0.434			0.824	0.742		0.612	0.92			
_	1	1.049	0.957	0.599			1.049	0.957		0.815	1.185			
	1.25	1.38	1.278	0.896		T .	1.38	1.278		1.16	1.53			
	1.5	1,61	1.5	1.1			1.61	1.5		1.338	1.77			
	2	2.067	1.939	1.503			2.067	1.939		1.687	2.245		2.06	
	2.5	2.469	2.323	1.771			2.469			2.125	2.709			
	3	3.068	2.9	2.3		-	3.068			2.624	3.334			
	3.5	3.548	3.364]	3.548				3.834			
	4	4.026	3.826	3.152			4.026			3.438				
	5	5.047	4.813	4.063		l	5.047			4.313				
	6	6.065	5.761	4.897			6.065			5.187				
	8	7.981	7.625	6.875			7.981			6.813				
	10		9.75	8.75			10.02			8.5				2 9.7
	12	12	11.75				11.938			10.126				2 11.7
ļ	14	13.25	13		13.376		13.124			11.188				
1	16	15.25	15		15.376		15			12.812				
	18	17.25	17		17.376		16.876			14.438				
	20		19		19.25		18.812			16.062				
	22		21		21.25			19.75		17.75				
	24	23.25	23		23.25		22.624	21.562	2	19.312	23.564	1 23.5	<u> </u>	.
	26		25		25							 		
	28	27.25	27		27						207	20.270		
	30		29		29						29.	29.376	·	
1	32		31		3′		30.624		.					
[34		33	1	33		32.624		.					
i	36	35.25	35	<u> </u>	3!	5	34.	<u>)</u>				1		1,

ransmitte	r Specifics	ation Shee	· · ·							
Process Da		ation once	<u> </u>							•
TUCESS DE	11.C									
 Transmitte	Number		FT-X2			Flowsheet		01-FS-952		
Description			TX-1 Reflu	x Flow Tra	nsmitter					
Description			170 7 710110							
Stream Pro	nerties									
	wt%			Temperatu	ıre	90	°F	32.22222	°C	
		Methane		MW (liquid		16.85102	0		0	
		Ethane		Tc	ſ	-107.407	°F	-77.4482	°C	
		Propane		Pc		653.3645		45.04773		
		Butane		Vc		100.949		0	0	
		Pentane		Density			Lb/ft^3	1 -	g/cc	
		Carbon Die	l	Specific G	ravity	#NUM!	0		9,00	
		Nitrogen	JAIUC		r Pressure	I		720211.1		
-					r Pressure	10431.08		720.2111		
	0	0		Heat of Va			BTU/lb	#NUM!	cal/g	
	0	0		Heat Capa			BTU/lb-°F	-4.15267		
	0	· U			City	3.07E-06		3.07E-09		
				Viscosity	<u>1</u>		BTU/ft-hr-°		cal/cm-sec	۰۰
				Conductivi					N/m	
				Surface te	nsion	#NUIVI!	dynes/cm	#INUIVI!	IN/III	
Transmitte	r Data							 	<u> </u>	
		Flow Rate		Flow Rate		Pressure		Upstream		
Minimum		#NUM!	gpm	107.9383			psig	#NUM!	psig	
Normal		#NUM!	gpm	107.0112			psig	#NUM!	psig	
Maximum		#NUM!	gpm	106.4704	Mpph		psig	#NUM!	psig	
Mechanica	l Construct	ion		L						
		}			l					
	Pressure F	Rating		150	psig	400	degF			
	Material of	Constructi	on	316		Wetted Pa	rts (if differ	ent)		
	Failure Mo			High						
	Pipe Line	Size		3"		Schedule	10			
	Weatherp	roofing (free	ze Protect/	Trace/Purg	Magnetic	Flow Meter	Purge Flui	d		[
		<u> </u>						T		
				<u></u>	Ţ]
Transmitte	r Range	 								
. i di lorratto					1	1				
Units	gpm	 	Trans Ran	ae Hiah	250		Trans Rar	nge Low	0	
OTHIS.	יייאצ		Alarm High			 	Alarm Low		120	
			Alarm Dev		+10%		Alarm Dev		-10%	
			Shutdown		1070		Shutdown			
	3		SHALAOWIT		+		3.14t404411		-	
		i								
					.					
		Drap jesti-d	ed in FV-X1		on			Date:	40155	

Process D	ata							 	 	· ———
							-			
									ļ <u></u> -	
Transmitte	r Number		FT-761			Flowsheet		177-FS-06	16	l
Description				to MOIV FI	are Stack	1 iowanicot		177-1 0-00	,,, 	-
1										-
Stream Pr	perties					<u> </u>				-
	wt%			Temperatu	ıre	90	°F	32.22222	°C	· ···-
		Methane		MW (liquic		16.85102			·	
	5.19	Ethane		Тс	1	-107,407		-77.4482	_	ļ
	1.3	Propane		Рс		653.3645	\$ · ·	45.04773		
		Butane		Vc			ml/mole	0	· · · · · · · · · · · · · · · · · · ·	
	0.406	Pentane		Density		0.042075		#NUM!	g/cc	
	0.812	Carbon Die	oxide	Specific G	ravity	0.581752	Ō			.t
	0.49	Nitrogen			r Pressure		mmHg AB	720211.1		
	0	0			r Pressure	10431.08		720.2111	 	
	0	0		Heat of Va		#NUM!	BTU/lb	#NUM!	cal/g	
	0	0		Heat Capa		-4.15267	BTU/lb-°F	-4.15267		1
				Viscosity		3.07E-06		3.07E-09	Pa-sec	
				Conductivi		0.00199	BTU/ft-hr-	8.22E-06	cal/cm-sec	-°C
				Surface te	nsion	#NUM!	dynes/cm	#NUM!	N/m	
									İ	
Transmitte	r Data									
		Flow Rate		Flow Rate		Pressure D)rop	Upstream	Pressure	
Minimum			MSCFH		Mpph	36.12		39.1	psig	
Normal			MSCFH		Mpph	17.9			psig	
Maximum		630	MSCFH	28	Mpph	5.38	psi	17.38	psig	
					-					
Vlechanica	I Constructi	on								
	Pressure R			150	psig		degF			
	Material of		pn	316		Wetted Pa	rts (if differe	ent)		ļ
	Failure Mo			High						
	Pipe Line S			6"			40	l <u></u> .		
	vveatherpr	ooting (tree	ze Protect/	race/Purg	Vortex Flo	vmeter	Purge Fluid	.		
Transmitts	r Dones								<u></u>	
Transmitte	range									
Jnits	scfh		Tranc De	an Hiele	700		T			
JIIII S	3CIII		Trans Ran		700		Trans Ran		0	ļ
			Alarm High		1400/		Alarm Low		4004	
· · · · · · · · · · · · · · · · · · ·		-	Alarm Dev		+10%		Alarm Dev		-10%	<u> </u>
			Shutdown	nign			Shutdown	LOW		
										<u></u>
Commonto	See FCV-7	61 for proc	cura dran					Data	44400	l <u></u>
COMMENTS	266 LCA-1	or for pres	sure drop					Date:	41100	
					1			Engr:	SMP	I

Control Va	lue Specif	ication She							[1.
Process Da		Cauci One	701	-					1	
PIUCESS Da	la			+		· · · · · · · · · · · · · · · · · · ·			<u> </u>	
						,		·		†
Valve Numb	her		FT-X2	+		Flowsheet	['	01-FS-952	<u></u>	
Description		'		ux Control V		1 30 30 3	i	1		
Description		1	170 1 1		†		1			
Stream Pro	nerties				,			†		†
	wt%		İ	Temperatur	re	90	l°F	32.22222	. °C	
		Methane		MW (liquid)		16.85102			- 1	٠
		Ethane		Tc	·	-107.407		-77.4482	°C	
		Propane		Pc	·	653.3645		45.04773		
i ·		Butane		Vc	1		ml/mole	0		٠
ı		Pentane	1	Density			Lb/ft^3		g/cc	
		Carbon Did	ovide	Specific Gr		#NUM!	0	-		,
		Nitrogen	JAIGE	Ideal Vapor			mmHg AB		1	
l	0.49	1		Ideal Vapor		10431.08		720.2111		
<u> </u>	0	<u> </u>		Heat of Var		#NUM!			cal/g	
	0			Heat Capa			BTU/lb-°F			
		ļ		Viscosity	inty +	3.07E-06		3.07E-09	Pa-sec	
		-	-	Conductivit	.tu		BTU/ft-hr-°		cal/cm-sec	r-°C
			1	Surface ter			dynes/cm			í
				Surface to		#INCIVIT	Cyrico.cii.	77,10	137111	
		1			1		· · · · · · · · · · · · · · · · · · ·			
Control Val	vo Data	ļ		+	†	ļ'				
COINTOI Vai	Ve Data	Flow Rate		Flow Rate		Pressure D	 Dron	Upstream	Pressure	
Minimum			gpm	107.9383			psi		psig	
Normal		#NUM!	gpm	107.9303			psi	#NUM!	psig	
Maximum			gpm	106.4704			psi psi		psig	
Maximum		#INCIVI:	gpiii	100.770-1	inibbu	TI VOIVI.	poi	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Po.9	
Shut Off D	100 8608	,				[+	 		
Stirr Oil D	100.0050	psi			<u> </u>					
			-				+			
* Acchanian	Construe	dian.		+	 				-	
Mechanica	Construct	,ion				 	 			
	Pressure F	Delina		150	psig	400	degF			
		raung of Construction	:	316	Wetted Pa					
	Failure Mo		On		VVEILEGIA	118 (ii dinor	T			
				open 3"	Schedule	10	1			
	Pipe Line	Size		3	Scriedule	10	-			
					-					
							+			
								+		
ļ	<u> </u>	1								
					-					
	<u></u>									
								4		
		drop include	I					Date:	40155	-

		ication She	76F			ļ <u></u>				
Process D	ata				<u> </u>					
	•			************						
dales Niena	h		E01/ 704			F		447.50.00		
Valve Num			FCV-761	 - MON/FI	<u> </u>	Flowsheet		117-FS-06	· 6	
Description			Fuel Gas	to MOIV Fla	are Stack					
Stream Pro	nortice.		·							
Sueam Pic	wt%		. .	Tononovati	<u></u>	90	0	20.00000		
		Methane		Temperatu		16.85102	0	32.22222	0	
		Ethane		MW (liguid	7	-107.407		-77.4482	1	
		Propane		Pc		653.3645		45.04773		
·		Butane		Vc			ml/mole	45.047 <u>73</u> 0	par 0	
		Pentane		Density		0.042075				
		Carbon Did		Specific G	ravitu	0.042075	LD/IE-3		g/cc	
		Nitrogen	Muc		ravity or Pressure		mmHg AB	-	0 mbor	
	U. 4 8	nitrogen 0			or Pressure	10431.08	neia	720211.1		
	0	0		Heat of Va			psig BTU/lb	#NUM!	cal/g	
	0	0		Heat Capa			BTU/lb-°F	-4.15267		
				Viscosity	City	3.07E-06		3.07E-09		
	-			Conductivi	t		BTU/ft-hr-°		cal/cm-sec	°C
				Surface te		#NUM!	dynes/cm	#NUM!	N/m	- C
				Surface te	131011	#INCIVI:	aynes/cm	#INOIVI!	INAIII	
						l				
Control Va	ve Data							<u> </u>	<u></u>	
JOHN VA	ve Data	Flow Rate		Flow Rate		Pressure D)ron	Upstream	Dreceure	
Minimum			MSCFH		Mpph	36.12			psig	
Normal			MSCFH		Mpph	17.9		25.0	psig	
Maximum			MSCFH		Mpph	5.38		17.38	nsia	
					пррп		POI	17.00	poig	=
Shut Off D	55	psi								
		<u>. F</u>							:	
								·		
Mechanica	l Constructi	on			· · · · · · · · · · · · · · · · · · ·					
	Pressure R	Rating		150	psig	400	degF			
	Material of		on	cs		rts (if differe				
	Failure Mod	- 1		Close						
	Pipe Line S			6"	Schedule	40				
					1					
					†					
					-					
}	I			1	1			l		<u> </u>
Comments	Pressure d	rop include	s pressure	drop acros:	s FT-761			Date:	41100	

Appendix B Hydraulic calculations

Pressure Drop Calculations										
	Units		2	3	4	ις.	9	2	000	O
Flow Conditions								-1		
	lb/hr	2420.2	as 2420.2	7.2	10.2	10.2	10.2	Gas 25210.2	Gas 24650.21	Gas 24647 28
	scfh	100	l W	27	567675.9	191	567675.9	5676	55506	ואוכ
	Î	7.791.7	2167.1	41.9	1.26	31.26	1.26	9461.26	2	
Velocity Upstream		242.8535	67.01175	64.72668	52.21853	74.18342	117.4006	129.8642	55	60.09
Critical Carrying Velocity (Chem Engr)		29.678	90/0	802	2.2611	4817	တ္	39.197	50.2	293.9091
Critical Carrying Velocity (Cameron)			070							
Discharge Pressure		5.81	45.81988	45.76677	45.69279	45.64352 45.40186	39 63405	39.63405	35.99113	31.228
å		012	.05311	.07397	04927	416	5.76781	3.64291	52	5.283814
Fluid Floperites Molecular Weight	euon	16 85017		16 85017	0		40.000	40.01		1 10
Temperature	EL 4	0	5	3	9	0.0	0.0	9.8301	6.85U1 9	16.85017
Viscosity Density Upstream	cP lh/ff3	0.011347	0.011347	0.011347	- 6	011	0113	01134	01134	.0113
Density Downstream	lb/ff3	17289	12	172	17238		0.155218	4481	0.131204	0.131204
Friction Factor Calculation		1.000		1						
Relative Roughness	none in/in		0.00015	0.00015	0.00015	0.00015	0.00015	0.00015	0.00015	0.00015
Straight Pipe friction factor	none	0.015166		0.013799	0.01397	0.014196	1 4	0.000220		0.015245
l urbulent friction factor	none	0	7	0129	0.012973	0.013434	<u> </u>	0.014072		0.014903
	inches	9	12	12	12	1	ď	O	C	
Pipe Schedule				1	0	Sch 40	Sch 40	0	Sch 40	Sch 40
Pipe Inside Diam	inches	6.0	9	11.938	1.93	9	7 98	7.9	7.98	1-
	reet	0.737048	0.373824	49.5	15	61.5	459	339	3	l
Fittings		3	20010	200	2007	0.04557.0	10.07025			U./84223
			0	0	0	0	20	7	19	2
450 Elbows Globe Valves	number	0 0	0	0	0	0	က	-	2	0
Gate Valves	number	0	0	0	0	O C	0 0	0 5	0 0	0 +
Plug Valves	number		0	0	0	0	2		0	0
Butterfly Valves	number	0	0	0	0	0	0	0	0	0
Runs Through Tees	number	0	5 ~	0	0 +	0 6	0	00	0 +	- 0
Branches Through Tees	number	1							0	0
N value for Fittings Entrance and Exit I osses		2.086407	0.259459	0.259459	0.259459	0.806068	11.08853	4.840677	8.977766	2.503688
Contractions	none	0	0	0			C	d	-	C
Expansions	number		0	0	0	0	0	0	0	0
Orifice Calculations	בוסו	-	0	5	0.5	0.5	0	0	0.5	0
Orifice Diameter	inches	0	0	0	0	0	0		C	
Orifice Plate Thickness	inches	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125
Orifice Coefficient	none	0.62	1.62	1.62	162	162	163	183	1 60	1 83
'K' Value for Orifice	none	0	0	0			0	0	0	0
valve Carculations Valve Cv Value	9000	5	40	Ç	,	4	_	07		
Number of Valves	none	0	0	0	0	0	0	20	2 0	20
'K' Value for Valves	none	0	0	0	0	0	0	0	0	0
Valve Cv Value	none	10	- 0	10	10	, C	2	4		,
Number of Valves	попе	0	0	0	0	0	0	0	0	0
Other Equipment	none	0	0	0	0	0	0	0	0	0
Enter Other 'K' Values	none	0	0	0	0	0	0	0	0	0
Total Overall 'K' Value	none	3.323455	0.633282	0.946069	0 970091	2 351646	21 16478	_ .	7007	20704
	777/562			2001	200	5	<u>+</u>	7070	13.40848	3.28/912
Flowrate Calculation Friction Data at given Conditions										
	Velocity H		.083719	078038	050729			- 1	- 1	0.957103
	e/D Re No		20 2	000151	200151			-	300226	0.000297
TOTAL TOTAL	A	1	8.625	619882	585384			~	717628	2259976 3 135845
	<u>م</u> د		517924	509915	77			~	F I	3.098803
TOTAL TOTAL	(B-A)^2		011465	012093	01653			-	8.27284	3.099203
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	C-2B+A	0.029078	0.109886 0	0.112932 (0.132615	0.097944 (0.063866	0.063866	0.065106 (0.037443
Full Turbulent Flow Values	—	- 1	013774	013799	01397			9	.014611	0.015245
Full Turbulent Flow Values	700									
	׌	- 1	779722	779722	779722	627594	429973		4290	8.19152
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- 1 1	779722	779722	779722	627594		3.429973 8. 3.429973 8.	4295	8 19152
	(B-A)^2 C-2B+A	8.59E-19 4	4.58E-18 4	.58E-18	4.58E-18 2	98E-18	1.7E-18	1.7E-18	1.7E-18	-38E
	1	[012973	012973	012973	013434		1.31E-09 1.0.014072 0.	31E-09 014072	9.27E-10 0.014903
Compressinte Flow Limits	9	4 00400	00,000					1 1		
DP/P' Maximum	none	651944	391539	1.29136 463912	36	1.29136 608559	.29136 832998	1.29136	1.29136	1.29136 650662
DP/P' Actual	none	.064612	000878	001223 0	000816	.004005	095974	067052	093959	1150
'Y' Actual	none	0.966659 0	.999032 0.	593427 998928 0	999297	0.99766	0.718691 (0.967589 (0.712036 0.975484 0	.719326 0. 967363 0	940435
								2	200	1
PRD Calculations										
PRD Set pressure	psig	100	70000	0 14000	000					
The state of the s					0 284000	.002417 U	0 8/9/60.	.036429 0	.047625 0	.052838

Appendix C References

§60.18 General control device require-

ered by subparts referring to this secience and only apply to facilities covparts 60 and 61. The requirements are to comply with applicable subparts of requirements for control devices used placed here for administrative conven-(a) Introduction. This section contains

(b) Flares. Paragraphs (c) through (f)

2 consecutive hours. operated with no visible emissions as determined by the methods specified in apply to flares.
(c)(1) Flares shall be designed for and exceed a total of 5 minutes during any paragraph (f), except for periods not to

(2) Flares shall be operated with a flame present at all times, as determined by the methods specified in

paragraph (f).
(3) Flares shall be used only with the net heating value of the gas being combusted being 11.2 MJ/scm (300 Btu/scf) value of the gas being combusted being 7.45 MJ/scm (200 Btu/scf) or greater if or air-assisted; or with the net heating or greater if the flare is steam-assisted specified in paragraph (f).
(4)(1) Steam-assisted and nonassisted ing value of the gas being combusted shall be determined by the methods the flare is nonassisted. The net heat-

paragraph (f)(4), less than 18.3 m/sec (60 ft/sec), except as provided in paragraphs (b)(4) (ii) and (iii). ated with an exit velocity, as deter-mined by the methods specified in flares shall be designed for and oper-

ft/sec) but less than 122 m/sec (400 ft/sec) are allowed if the net heating value of the gas being combusted is greater than 37.3 M/J/scm (1,000 Btu/scf). equal to or greater than 18.3 m/sec (60 an exit velocity, as determined by the methods specified in paragraph (f)(4), clares designed for and operated with (ii) Steam-assisted and nonassisted

flares designed for and operated with an exit velocity, as determined by the (iii) Steam-assisted and nonassisted

> methods specified in paragraph (f)(4) graph (f)(5), and less than 122 m/sec (400 ft/sec) are allowed. mined by the method specified in parathe velocity, Vmmx, as deter-

ity less than the velocity, V_{max} , as determined by the method specified in signed and operated with an exit velocparagraph (f)(6). (5) Air-assisted flares shall be de-

sisted, or nonassisted. section shall be stearn-assisted, air-as-(6) Flares used to comply with this

subpart shall monitor these control deto comply with the provisions of this their designs. Applicable subparts will vices to ensure that they are operated or operators of flares shall monitor provide provisions stating how owners these control devices. and maintained in conformance (d) Owners or operators of flares used

at all times when emissions may sions of this subpart shall be operated (e) Flares used to comply with provi-

vented to them.

sions of this subpart. The observation cording to Method 22. period is 2 hours and shall be used acflares with the visible emission proviused to determine the compliance (f)(1) Reference Method 22 shall ខ្ព

to detect the presence of a flame. shall be monitored using a thermocouple or any other equivalent device (2) The presence of a flare pilot flame

being combusted in a flare shall be calculated using the following equation: (3) The net heating value of the gas

where:

H_r=Net heating value of the sample, MJ/scm: is based on combustion at 25 °C and 760 ing to one mole is 20 °C; mm Hg, but the standard temperature where the net enthalpy per mole of offgas for determining the volume correspond-

Environmental Protection Agency

Constant, 1.740×10^{-7} $(\frac{1}{\text{ppm}})$ (g mole)

where the standard temperature for (g mole) is 20°C;

C=Concentration of sample component i in ppm on a wet basis, as measured for organics by Reference Method 18 and measured for hydrogen and carbon monoxide by ASTM D1946-77 (Incorporated by reference as specified in §60.17); and

H=Net heat of combustion of sample component 1, kcal/g mole at 25 °C and 760 mm termined using ASTM D282-76 (incorporated by reference as specified in §60.17) if published values are not available or cannot be calculated. Hg. The heats of combustion may be de-

shall be determined by dividing the volumetric flowrate (in units of standthe flare tip. structed (free) cross sectional area of ard temperature and pressure), as de-2C, or 2D as appropriate; by the unobermined (4) The actual exit velocity of a flare by Reference Methods 2, 2A.

Vmax, for flares complying with paragraph (c)(4)(iii) shall be determined by the following equation. (5) The maximum permitted velocity.

Log10 (Vmax)=(HT+28.8)/31.7

28.8=Constant 31.7=Constant V_{mm}=Maximum permitted velocity, M/sec

H_T=The net heating value as determined in paragraph (f)(3).

V_{mux}, for air-assisted flares shall be determined by the following equation. (6) The maximum permitted velocity

Vmax=8,706+0,7084 (H_T)

V_{max}=Maximum permitted velocity, m/sec 8.706=Constant

0.7084=Constant H_{τ} =The net heating value as determined in paragraph (f)(3).

§60.19 General notification porting requirements. and re[51 FR 2701, Jan. 21, 1986]

explicit postmark deadline is not speci quirement. erwise specified in an applicable re-(b) For the purposes of this part, if a.

quirement. For example, if a notification must be submitted 15 days before a particular event is scheduled to take mark provided by the U.S. Postal Serv of the event. The use of reliable non on or before 15 days following the en must be submitted 15 days after a par place, the notification shall be post marked on or before 15 days preceding the event; likewise, if a notification submittal on or before the number o munication to the Administrator, the owner or operator shall postmark the is acceptable. agreed to by the permitting authority ice, or alternative means of deliver indications of verifiable delivery of in Government mail carriers that provid ticular event takes place, the notifica cation, report, formation required to be submitted t tion shall be delivered or postmarke days specified in the applicable rethe submittal of a notification, applified in an applicable requirement for or other written com-

trator. Procedures governing the time periods or deadlines may operator, or the review of such information by the Administrator, suc plementation of this provision specified in paragraph (f) of this the owner or operator and the Admini postmark deadlines specified in thi changed by mutual agreement betwee to the Administrator by an owner c part for the submittal of informatio (c) Notwithstanding time periods c

time periods specified in days shall be measured in calendar days, even if the word "calendar" is absent, unless oth-(a) For the purposes of this part, State, and if the State has an esta gated authority is required to subm periodic reports under this part to tl fected facility in a State with del (d) If an owner or operator of an a timeline for the submission